当前位置:云书屋>惊悚科幻>学霸的黑科技系统> 第191章 灵感,总是来得不经意
阅读设置(推荐配合 快捷键[F11] 进入全屏沉浸式阅读)

设置X

第191章 灵感,总是来得不经意(2 / 2)

虽然最后开了个玩笑,但陆舟的心情却并不算好。


盯着电脑的件看了好久,又看了眼旁边那叠几乎写满的a4纸,他双手抓着头发,满脸都是浮躁。


两线作战似乎是个错误的选择,一边是数论,一边是泛函分析和群论,每一个问题都让人头大


而且这还不是最难受的,最难受的是弗兰克先生在对称场外引入额外维的操作,实在是缺乏数学的美感,明明按照他的那套观点,从暗物质的角度来解决这个问题,很多在数学解释不通的问题都可以避免。


如果从暗物质的角度出发,每一个z/pz的生成元都能被映射到exp(2pi·i)这样的函数,庞特里亚金对偶问题也可以得到妥善的解决……大概?


总之在数学的直觉告诉他,这种可能性很大,和完善这套理论的工程量一样大!


靠在了椅子,陆舟望着天花板,大脑里不断徘徊着那些符号,连马要去吃饭的事儿都忘了。


群论…


群论……


要是这群论的问题和数论一样简单好了……虽然数论也不算简单。


等等,群论?!


陆舟眼睛一亮,忽然脑灵光一闪。


这一闪而逝的灵光并没有照亮750gev特征峰下的阴影,而是意外地亮在了波利尼亚克猜想的头顶。


从椅子一把坐了起来,陆舟手转着笔,大脑转得飞快。


群论是个很强大的工具,不但和泛函分析的希尔伯特空间并列为量子力学的两大理论神器,在数论、尤其是针对无限的素数问题进行研究时,更是往往能发挥效。


如,任何基础数论的老师,在第一或者第二堂课都会提到的一个很经典的范例——费马小定理。


这条定理有很多证明方法,其公认最简洁证明方法,便是用群论证明的。


至于有多简洁,标准字体甚至只需要三行能做到。


即,若a和p互素,由euler定理有aφ(p)≡1(modp),但φ(p)=p-1,故a(p-1)≡1(modp),两边乘以a即可得结论:当a是自然数,p是素数时,有ap≡a(modp)。


是不是很简单?


事实,费马小定理只是欧拉定理的一个特例。


不过用欧拉定理,依旧可以用群论的方法解决,而且全部证明过程用不了半页纸。


这段时间里,陆舟在思考波利尼亚克猜想证明的时候,思路一直在如何对筛法的拓扑学原理进行补充,如何将k=1形式推广到无穷大的自然数,却没有考虑过运用其他的数学方法……


事实,arxiv站的很多论,这大半年来也是在干同样的事情,尝试改进他的方法,然后在此基础解决波利尼亚克猜想。


然而,连陆舟自己都没有想到,自己竟然从一个毫不相干的物理课题得到了启发。


救出这位被巨龙困在城堡里的公主方法,并不是给这把曾经斩过一头小龙的宝剑附魔,而是应该取下背在他背的那柄长弓。


指间的圆珠笔转得越来越快,最终嗖的一声飞了出去,“啪”的打在了台灯。


没有去捡,陆舟忽然长叹一声,趴在了桌子,有些懊恼地感慨道。


“疏忽了……这条思路,说不准还真行得通!”


灵感一来,思路如尿崩,挡都挡不住!


将“750gev”的事情暂时放在了一边,陆舟二话不说从抽屉里扯出来一张崭新的a4纸,顺着这条新思路,开始认真钻研了起来……


请收藏:https://m.yunshu5.com

(温馨提示:请关闭畅读或阅读模式,否则内容无法正常显示)

上一页 目录 +书签 下一章